Dr. Esteban Rodríguez C.

Investigación FAME UACh

  • Información Académica:

    S/I

    Interés Científico

    Hidrocefalia congénita

    La hidrocefalia congénita afecta a 1 de cada 1000 niños. Los niños nacen con importantes alteraciones neurológicas producto de las alteraciones en el desarrollo de la corteza cerebral. Estas son consecuencia de una pérdida de células madre neurales en el telencéfalo durante el desarrollo embrionario. Nuestro principal reto es utilizar esta información para desarrollar nuevos tratamientos para la hidrocefalia congénita. Actualmente estamos implementando una terapia regenerativa en modelos animales mutantes que desarrollan hidrocefalia congénita, basada en el uso de células madre neurales sanas y factores tróficos que esperamos ayude a disminuir o a reparar la pérdida de las células madre enfermas y sus consecuencias.

    Líneas de Investigación

    • Disruption of the neuroepithelium/ependyma (ventricular zone) during development leads to hydrocephalus, abnormal brain development and impaired postnatal neurogenesis. Strategies aimed to diminish/repair the outcome of ventricular zone disruption.

    Proyectos Vigentes

    S/I

  • Publicaciones Relevantes de los últimos 10 años

    1. Guerra M, Blázquez JL, Rodríguez EM (2017) Blood-brain-barrier and foetal onset hydrocephalus, with a view on potential novel treatment beyond managing CSF flow. Fluid and Barriers of CNS. 2017 Jul 13;14(1):19.
    2. McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage J Neuropathol Exp Neurol. 2017 May 1;76 (5):358-375.
    3. Rodríguez  EM,  Guerra  MM.  Neural  Stem  Cells  and  Fetal-Onset  Hydrocephalus.  Pediatric Neurosurg. 2017;52(6):446-461.
    4. Ortloff AR, Vío K, Guerra M, Jaramillo K, Kaehne T, Jones H, McAllister JP 2nd, Rodríguez E. Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res. 2013 Jun;352(3):707-25
    5. Oliver C, González CA, Alvial G, Flores CA, Rodríguez EM, Bátiz LF. Disruption of CDH2/N-cadherin-based adherens junctions leads to apoptosis of ependymal cells and denudation of brain ventricular walls. J Neuropathol Exp Neurol 2013;72(9):846-60.
    6. Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S,  Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WF, Jiménez  AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C. A cell junction pathology of neural stem cells leads to abnormal eurogenesis and hydrocephalus. Biol Res 2012;45(3):231-42.
    7. Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez LM, Domínguez-Pinos MD, Rodríguez EM, Pérez-Fígares JM, Jiménez AJ.Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus.  Acta Neuropathol 2012;124(4):531-46.
    8. Sival DA, Guerra M, den Dunnen WF, Bátiz LF, Alvial G, Castañeyra-Perdomo A, Rodríguez EM. Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 2011; 21(2):163-79.
    9. Bátiz LF, Jiménez AJ, Guerra M, Rodríguez-Pérez LM, Toledo CD, Vio K, Páez P, Pérez-Fígares JM, Rodríguez EM. New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol 2011;121(6):721-35.
    10. Rodríguez EM, Blázquez JL, Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 2010;31(4):757-76
    11. Guerra M, Blázquez JL, Peruzzo B, Peláez B, Rodríguez S, Toranzo D, Pastor F, Rodríguez EM. Cell organization of the rat pars tuberalis. Evidence for open communication between pars tuberalis cells, cerebrospinal fluid and tanycytes. Cell Tissue Res 2010;339(2):359-81
    12. Guerra M, Rodríguez EM. Expression of tuberalin II, alpha-subunit of glycoprotein hormones and beta-thyrotropin hormone in the pars tuberalis of the rat: immunocytochemical evidence for pars tuberalis-specific cell types. Neuroendocrinology 2009;90(3):269-82
    13. Jiménez AJ, García-Verdugo JM, González CA, Bátiz LF, Rodríguez-Pérez LM, Páez P, Soriano-Navarro M, Roales-Buján R, Rivera P, Rodríguez S, Rodríguez EM, Pérez-Fígares JM. Disruption of the neurogenic niche in the subventricular zone of postnatal hydrocephalic hyh mice. J Neuropathol Exp Neurol 2009;68(9):1006-20
    14. Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao YC, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodriguez EM, Sheen VL. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet. 2009 Feb 1;18(3):497-516.
    15. Schöniger S, Caprile T, Yulis CR, Zhang Q, Rodríguez EM, Nürnberger F. Physiological response of bovine subcommissural organ to endothelin 1 and bradykinin. Cell Tissue Res 2009;336(3):477-88
      -Bátiz LF, De Blas GA, Michaut MA, Ramírez AR, Rodríguez F, Ratto MH, Oliver C, Tomes CN, Rodríguez EM, Mayorga LS. Sperm from hyh mice carrying a point mutation in alphaSNAP have a defect in acrosome reaction. PLoS One. 2009;4(3):e4963
    16. Vio K, Rodríguez S, Yulis CR, Oliver C, Rodríguez EM. The subcommissural organ of the rat secretes Reissner’s fiber glycoproteins and CSF-soluble proteins reaching the internal and external CSF compartments. Cerebrospinal Fluid Res 2008; 5:3. doi: 10.1186/1743-8454-5-3
    17. de Wit OA, den Dunnen WF, Sollie KM, Muñoz RI, Meiners LC, Brouwer OF, Rodríguez EM, Sival DA. Pathogenesis of cerebral malformations in human fetuses with meningomyelocele. Cerebrospinal Fluid Res 2008 1;5:4. doi: 10.1186/1743-8454-5-4.
    18. Páez P, Bátiz LF, Roales-Buján R, Rodríguez-Pérez LM, Rodríguez S, Jiménez AJ, Rodríguez EM, Pérez-Fígares JM. Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol. 2007 Dec;66(12):1082-92.
    19. Bátiz LF, Páez P, Jiménez AJ, Rodríguez S, Wagner C, Pérez-Fígares JM, Rodríguez EM. Heterogeneous expression of hydrocephalic phenotype in the hyh mice carrying a point mutation in alpha-SNAP. Neurobiol Dis 2006;23(1):152-68
    20. Krsulovic J, Peruzzo B, Alvial G, Yulis CR, Rodríguez EM. The destination of  the aged, nonreleasable neurohypophyseal peptides stored in the neural lobe is associated to the remodeling of the neurosecretory axon. Microsc Res Tech 2005;68(6):347-59
    21. Rodríguez EM, Blázquez JL, Pastor FE, Peláez B, Peña P, Peruzzo B, Amat P. Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 2005;247:89-164
    22. Domínguez-Pinos MD, Páez P, Jiménez AJ, Weil B, Arráez MA, Pérez-Fígares JM, Rodríguez EM. Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol  2005;64(7):595-604
    23. Montecinos HA, Richter H, Caprile T, Rodríguez EM. Synthesis of transthyretin by the ependymal cells of the subcommissural organ. Cell Tissue Res 2005;320(3):487-99
    24. Richter HG, Tomé MM, Yulis CR, Vío KJ, Jiménez AJ, Pérez-Fígares JM, Rodríguez EM. Transcription of SCO-spondin in the subcommissural organ: evidence  for down-regulation mediated by serotonin. Brain Res Mol Brain Res 2004;129(1-2):151-62
    25. Tomé M, Jiménez AJ, Richter H, Vio K, Bermúdez-Silva FJ, Rodríguez EM, Pérez-Fígares JM. The subcommissural organ expresses D2, D3, D4, and D5 dopamine receptors. Cell Tissue Res 2004;317(1):65-77

  • Contacto